

Examination of Pathways to Excellence Scholarship Program for women in STEM fields*

Joseph Di Rienzi, Professor of Physics 2014 AAPT Summer Meeting 2014 July 30, 2014

*This program is supported by S-STEM #1060595 grant by the National Science Foundation

Description of Program

Notre Dame of Maryland University (NDMU) has completed the third year of a NSF S-STEM grant that awards 11 scholarships annually to academically talented women undergraduates with financial need in physics, mathematics, engineering and computer systems. The program provides in addition to scholarships, support and activities to encourage pursuit of STEM fields.

Profile of Scholars

First year (2011-2012):

10 scholars: 5 first year, 5 current students

Diversity: Under-represented: 40%

Majors: Physics/Engineering:7

Mathematics: 1

Computer Systems: 1

Undecided: 1

Retention: 70% (loss of 3 first year students)

Second year (2012-2013):

11 scholars: 1 first year, 10 current students

Diversity: Under-represented: 45%

Majors: Physics/Engineering:7

Mathematics: 3

Computer Systems: 1

Retention: 91%*

* Three went on to engineering school and one to graduate school by fall 2013

Profile of Scholars (cont'd)

Third year (2013-2014):

11 scholars: 1 first year, 1 transfer student, 9 current students

Diversity: Under-represented: 37%

Majors: Physics/Engineering: 4

Mathematics: 5

Computer Systems: 2

Retention: 82%**

** One is going on to engineering school and two to graduate school in fall 2014.

Program Academic and Professional Development Support

- One credit course in fall semester
- Tri-mentoring system: Each scholar has three mentors: faculty, peer (for new scholars) and external to provide academic and career advisement
- Career Development: Each scholar
 participates in career assessment sessions and
 constructs an Annual Career Development
 Plan assisted by mentors and members of the
 Career and Student Success Center.

Program Activities

- First Year (2011-2012): Renewable Energy and Sustainability Attendance at Energy and Sustainability Conference University of Delaware
 - Seminar with environmental activist and artist Robert Shetterly
 - Sustainability field experience using GPS with Environmental Scientist Dr. Cynthia Hamel.
- Second Year (2012-2013): Space Science and Engineering Meet and Greet NASA Electrical Engineer and alum LaVida Cooper
 - Presentation by NASA Scientist, Dr. David Batchelor on the Feasibility of Silicon Based Life Forms
 - Trip to NASA/Goddard Space Flight Center

Program Activities Third Year (2013-2014) Computer Systems and Robotics

CyberMaryland 2013 Conference October 8-9, Baltimore, MD

Trip and Tour of NASA/Goddard Space Flight Center – Microelectonics Branch October 22, Greenbelt, MD

Technology and Sustainability Field Experience with Dr. Cynthia Hamel November 9, Baltimore, MD

Admission, Retention, and Matriculation

7	Ca	hl	ما	1
	а			

Decision

Influenced decision (% reporting "Yes")

	Program year 2	Program year 3
To attend NDMU	67	70
Have declared STEM major	67	70
First Generation College	33	60

Mentor Support

To the Objective of providing career trajectory support from professionals in the field

Table 2 Discussion of goals with Mentors

Discussion Type	Percentage Reporting	
	Program Year 2	Program Year 3
Mentor, long term career	89	90
Mentor, academic/scholarly	68	100

Subjective reports from Participants on Their Experiences in the STEM program vs Control Group

Table 3

Item Mean		an (Median)	(Median)	
	Year 2	Year 3	Control*	
Scholars found the program intellectually/scholastically challenging	4.56(5)**	5.50(5.5)	5.60 (7)**	
See academic advisor more since joining STEM program	5.00 (5)	4.67(5)		
Career goals clarified by participation	5.56 (5)	5.00(4.5)	5.08(6)	
Program has been a <i>positive</i> experience	6.33 (6)	6.30(7)		
Program has been an <i>essential</i> experience	6.78(7)	5.70(6)		

^{*}Control data collected for 12 students majoring in Biology/Psychology

^{**}Likert-type scale: Score of 1 denotes disagreement with the statement, score of 7 denotes complete agreement

Table 4

• Totals of activities/meetings since joining STEM and a comparisons to Non-STEM Science Majors.*

Activity		STEM stud	dents	Control Cohor
Meet with advisor		6.62		6.20
Met with Mentor/				
Other professional		2.44		4.00*
Meet peer		2.80		
Overall Number				
Of seminar/				
Lectures attended		3.36		3.30
Attended Conferen	ce			
Or presented schol	arly work	0.80		1.33
Internships	Year 1: 0	Year2: 2	Year 3: 6	
Study Abroad	Year 1: 0	Year 2: 1	Year 3: 2	

^{*} Data is by semester participation for individual students, not program years.

^{**} One outlier in this distribution

Figure 1

Professional Contacts across semesters for STEM and Control
Cohort Majors

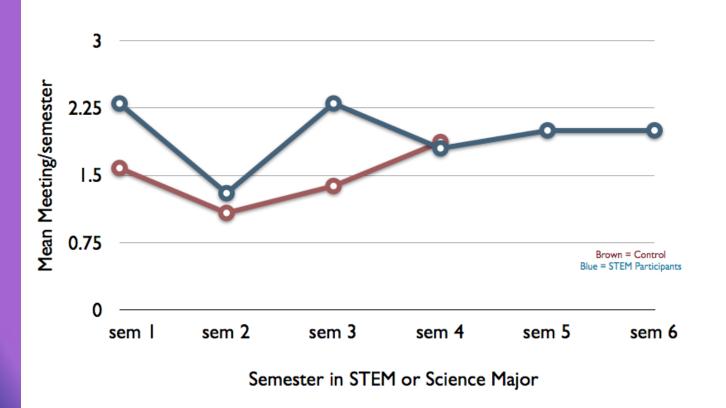


Figure 2

Contacts with Professionals and Mentors
(other than advisors) for STEM participants and Control Cohort MAj

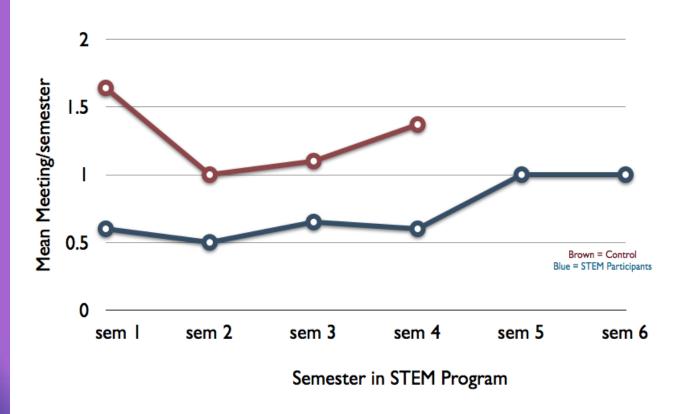
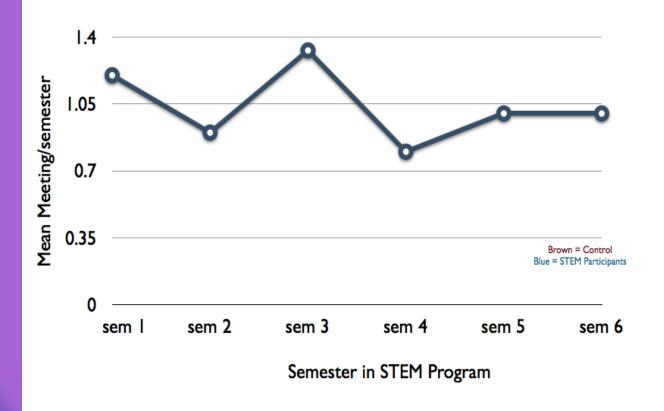



Figure 3

Contacts with Peers Across Semesters for STEM PArticipants

Lessons Learned

- Value of one credit course in fall to encourage participation in activities
- Need to include research component in activities
- Peer mentors need better training and development
- Build network of alumnae scholars to support current scholars

Acknowledgements

Co-Pl's: Barbara Mento and Margaret Sullivan

Evaluator: Jon Stanton

and

The Pathways to Excellence Scholars

Ad Astra

